
Centauri: Enabling Efficient Scheduling for
Communication-Computation Overlap in Large Model

Training via Communication Partitioning
Chang Chen

charlie_chen@pku.edu.cn
Peking University

China

Xiuhong Li∗
lixiuhong@pku.edu.cn
Peking University

China

Qianchao Zhu
dysania@pku.edu.cn
Peking University

China

Jiangfei Duan
dj021@ie.cuhk.edu.hk

The Chinese University of Hong Kong
China

Peng Sun
sunpeng@pjlab.org.cn

Shanghai AI Lab
China

Xingcheng Zhang
zhangxingcheng@pjlab.org.cn

Shanghai AI Lab
China

Chao Yang∗
chao_yang@pku.edu.cn

Peking University
China

Abstract
Efficiently training large language models (LLMs) necessi-
tates the adoption of hybrid parallel methods, integrating
multiple communications collectives within distributed par-
titioned graphs. Overcoming communication bottlenecks is
crucial and is often achieved through communication and
computation overlaps. However, existing overlap methodolo-
gies tend to lean towards either fine-grained kernel fusion
or limited operation scheduling, constraining performance
optimization in heterogeneous training environments.

This paper introduces Centauri, an innovative framework
that encompasses comprehensive communication partition-
ing and hierarchical scheduling schemes for optimized over-
lap. We propose a partition space comprising three inher-
ent abstraction dimensions: primitive substitution, topology-
aware group partitioning, and workload partitioning. These
dimensions collectively create a comprehensive optimiza-
tion space for efficient overlap. To determine the efficient
overlap of communication and computation operators, we de-
compose the scheduling tasks in hybrid parallel training into
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0386-7/24/04. . . $15.00
https://doi.org/10.1145/3620666.3651379

three hierarchical tiers: operation, layer, and model. Through
these techniques, Centauri effectively overlaps communi-
cation latency and enhances hardware utilization. Evalua-
tion results demonstrate that Centauri achieves up to 1.49×
speedup over prevalent methods across various parallel train-
ing configurations.

ACM Reference Format:
Chang Chen, Xiuhong Li, Qianchao Zhu, Jiangfei Duan, Peng Sun,
Xingcheng Zhang, and Chao Yang. 2024. Centauri: Enabling Ef-
ficient Scheduling for Communication-Computation Overlap in
Large Model Training via Communication Partitioning. In 29th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 3 (ASPLOS ’24),
April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3620666.3651379

1 Introduction
Recent advancements in LLMs have brought about a rev-
olution in the field of natural language processing (NLP)
[1, 5, 7, 35]. According to the scaling law of LLMs [14], there
exists a robust correlation between the sizes of models and
their performance capabilities. However, the pre-training
cost of LLMs is also notably escalating with the growth of
model sizes, demanding thousands of GPU-days for compu-
tation and substantial memory capacity [1].

Therefore, diverse parallelism methods [21, 29, 30] are ap-
plied to distribute the resource-intensive LLMs training tasks
across a GPU cluster. These methods encompass a range of
intricate parallelism paradigms, including data parallelism
(DP) [18], tensor parallelism (TP) [21, 33], pipeline paral-
lelism (PP) [10, 19, 21], fully sharded data parallelism (FSDP)

https://doi.org/10.1145/3620666.3651379
https://doi.org/10.1145/3620666.3651379

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chang et al.

Matmul
A

Atten-
tion

Matmul
B

Allgather
for B Allgather for C

a Matmul C Matmul
D

Allgather
for D

Attn Allgather &
Matmul Bb Allgather &

Matmul C
Allgather &
Matmul D

A2 Attn
Allgather

for B C1

D2D1

D1
c

C2

 C1

Timeline

Computation
Stream

Communication
Stream

Fused
Operation

B C2

Intra-node
Allgather on

Comm Stream

Inter-node
Allgather on

Comm Stream

D2C3

C3

Allgather for
A

A1

A1

A2

Allgather &
Matmul A

Figure 1. Different overlapping strategies on FSDP training
of a simplified Transformer structure: 𝑎 is direct schedul-
ing that weights are gathered before MatMuls; 𝑏 is MatMul
and Allgather kernel fusion; 𝑐 is Centauri scheduling that
communication is partitioned from group and workload di-
mensions for better overlapping

[42] and Zero [29], each introducing distinct communica-
tion patterns to the distributed tasks. Consequently, com-
munication overhead occupies a substantial portion of the
end-to-end execution time in parallel LLMs training, partic-
ularly within heterogeneous network environments [11, 40].
Thus, minimizing communication overheads is crucial for
the efficient scaling-out of parallel LLMs training tasks.
Simultaneous execution of computation and communi-

cation operations is vital for overlapping the communica-
tion overhead during parallel LLMs training. Previous ef-
forts have aimed to enhance this overlap through scheduling
and kernel fusion approaches. However, some frameworks
[9, 17, 18, 27, 28] focus on optimizing the scheduling of a
single parallel method and fall short in addressing the in-
tricate overlap challenges within hybrid parallel methods
[21, 29]. Notably, even for the forward and backward passes,
optimal overlapping patterns may vary. Certain strategies
[20, 32] rely on concurrent communications across multiple
GPU streams but may lack exploration into a broader over-
lap space involving computation. Meanwhile, graph-level
overlapping [16, 17, 42] in a coarse-grained manner might
under-utilize hardware resources, as depicted by the notable
gaps of resource idling shown in Fig 1 𝑎. On the other hand,
some sophisticated compiler-style works [11, 40] segment
collectives and their adjacent computations, generating fused
kernels at the operation level. Fine-grained kernel fusionmay
potentially overlook a wider range of graph-level scheduling
opportunities. This is illustrated in Fig 1, where MatMul B
in 𝑎 completes ahead of fused kernel B in 𝑏.

These limitations underscore two fundamental challenges
in optimizing overlap in LLMs training. The first challenge
revolves around systematically and comprehensively explor-
ing the full potential of overlapping space. To tackle this,
we propose a key insight: communication inherently is a
mapping transformation (primitive) of workload across a

Table 1. Overlapping Capability of Popular Frameworks

Works Primitive Group Workload Scheduling

Better Together [20] ✓ - - ✓
Breadth-First [17] - - - ✓
CoCoNet [11] ✓ - ✓ -
Dist-Einsum [40] - - ✓ -
DeepSpeed Zeros [29, 30] ✓ - ✓ -
Megatron-LM [21, 33] - - - ✓
OOO-Backprop [27] - - - ✓
Torch DDP, FSDP [18, 42] - - ✓ ✓

group of devices. Appropriately partitioning communication
operations can expand the optimization space for communi-
cation overlap (see Fig 1 𝑐). Thus, we propose an abstraction
of three dimensions: 1) primitive, 2) group, and 3) work-
load. This comprehensive abstraction forms our partitioning
space. Table 1 demonstrates the expressiveness of our ab-
straction, revealing the optimization spaces in most recent
related works are subsets of our space. The second challenge
is efficiently scheduling the partitioned communication and
computation operations in the optimization space for com-
plex hybrid parallel tasks, rather than from a single parallel
perspective. To address this challenge, we recognize that the
repetitive layer-wise architectures of LLMs and the iterative
nature of gradient accumulation during training allow us
to simplify the scheduling challenge into three hierarchical
tiers: 1) operation, 2) layer, and 3) model. Each tier focuses on
a different level of granularity, thereby preventing excessive
entanglement between them.

This paper introducesCentauri, a training system designed
to facilitate efficient scheduling for overlapping communica-
tion and computation in LLMs training through communi-
cation partitioning. Centauri contains two key components:
partitioning and scheduling. Firstly, to broaden the optimiza-
tion space for overlapping, we perform communication parti-
tioning with consideration of primitive, group, and workload
dimensions. Primitive partitioning primarily focuses on the
equivalence of substitution and the scalability of substituted
collectives. A collective group of ranks can be subdivided
into several groups in a topology-aware manner, maximiz-
ing the utilization of high intra-node bandwidths. Workload
partitioning requires the selection of compatible dimensions
based on the workload analysis of a sequence of communi-
cation and dependent computation operations.
With a comprehensive partition space, efficient sched-

uling of hybrid parallel training tasks can unlock the full
performance potential of overlapping with consideration of
operation, layer, and model levels. At the operation level,
orchestrating the execution order of communication among
different partitioned groups with appropriate workload gran-
ularity is essential to facilitate the overlapping of partitioned
operations. For layer-level backward overlapping, varying

Centauri ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

combinations of hybrid parallel methods result in diverse
communication patterns. Scheduling operations with adap-
tive priority according to the communication patterns as-
sumes promising layer-level performance improvements.
Model-level focuses on maximizing the overlap of forward,
backward, and model update phases across different hybrid
configurations. This hierarchical disentanglement of schedul-
ing space ensures the exploration of promising overlapping
strategies at a holistic level with small searching overheads.

This paper makes the following contributions:
• We put forward a novel communication partition ab-
straction, comprising three dimensions: primitive, group,
and workload. The adaptable combinations of these
dimensions encompass prevalent partition strategies.

• We decouple the complex scheduling optimization
space of hybrid parallel LLMs training into 3 hierar-
chical tiers: operation, layer, and model. They focus
on fine-granularity operation overlapping, backward
adaptive scheduling, and elastic cross-phase schedul-
ing, respectively.

• We implement Centauri within a widely adopted LLMs
training framework Megatron-LM [33]. We encapsu-
late the transformer layer with different partitioning
and scheduling strategies and develop a new distributed
reducer, optimizer, and pipeline scheduler.

• We evaluate the proposed techniques using an open-
source LLM LLaMA [35] across various parallel train-
ing methods in two heterogeneous environments. The
results demonstrate that Centauri achieves a remark-
able speedup of up to 1.45× on single parallel tasks
and 1.49× on hybrid tasks with strong scalability, com-
pared to prevalent methods.

2 Background
2.1 Collective Communication
MPI-style [8, 34] collective operations serve as essential ab-
stractions for data exchange patterns, widely adopted to
facilitate distributed tensor computation across 𝑃 devices for
each volume 𝐷 . Three commonly used collectives in hybrid
parallel training are:

• Allreduce aggregates data from different ranks by
applying a reduction operation for a result of volume
𝐷 .

• Reduce-Scatter reduces input values across ranks,
with each rank receiving a subpart of the result cor-
responding to a volume of 𝐷/𝑃 . This is typically em-
ployed after intensive computation operations.

• Allgather gathers values from all ranks and distributes
the result of volume 𝑃𝐷 to all ranks. This is typically
followed by intensive computation operations.

Communication libraries, such as the NVIDIA Collective
Communications Library (NCCL) [24], offer high-performance
implementations of these collectives on specific hardware

[H_in, H_out]

SP Allgather FSDP
Allgather

Operations

SP
Reduce-Scatter

[B, H_out]

PP Send-
Receive

PP Send-
Receive

SP Allgather
[H_in, H_out]

FSDP
Allgather

[B, H_in]

[B, H_in][H_in, H_out]

SP Reduce-Scatter
FSDP Reduce-

Scatter

Forward
Pass

D
P

Al
lre

du
ce

[B, H_out]

Backward
 Pass

[H_in, H_out/P2]

[B/P1,
H_out]

[H_in, H_out/P2] [B/P1, H_in]

[B/P1, H_out]

[B, H_in]

[B/P1, H_in]

Figure 2. Simplified forward and backward workflows of
hybrid parallelism, encompassing sequence parallelism, fully
sharded data parallelism, pipeline parallelism, and data par-
allelism.

links. In a GPU cluster, GPUs within a node are commonly
connected to high-bandwidth and low-latency NVSwitches
[26] with NVLink Network interconnects [25]. Collectives
are often implemented using a ring topology [24] to max-
imize bandwidth usage within a node. Conversely, GPUs
across nodes are typically connected through networks with
limited bandwidth and high latency. For multi-machine col-
lective implementations with full bandwidth and logarithmic
latency, the double binary tree approach [22] is commonly
employed.

2.2 Hybrid Parallel Training
LLM training often demands a large amount of memory that
exceeds the capacity of a single accelerator. As a result, LLM
tasks are usually distributed across multiple devices. The
choice of distributed strategies varies, each characterized
by unique communication patterns, contingent on specific
configurations.

An illustration of a hybrid parallel methods combination is
depicted in Fig 2. Data parallelism (DP) [18], a widely used
parallel training approach, involves distributing data samples
across devices. In this paradigm, a time-consuming allreduce
operation is added to accumulate gradients, which is usually
scheduled to be overlapped with back-propagation [9, 17, 18].
Fully sharded data parallelism (FSDP) [42] partitions
model parameters across devices and introduces an allgather
operation to pre-fetch weights before launching dependent
computations. The input tensor shape is [𝐻𝑖𝑛, 𝐻𝑜𝑢𝑡/𝑃], pro-
ducing an output tensor of shape [𝐻𝑖𝑛, 𝐻𝑜𝑢𝑡], where 𝐻𝑖𝑛 is
the contraction dimension and 𝐻𝑜𝑢𝑡 is the output dimension.
Post-computation, the memory allocated to store the global
weights is released, addressing memory constraints in LLMs
tasks. In the backward pass, FSDP weight gradients are also
reduce-scattered. Tensor parallelism (TP) [21] has evolved
into sequence parallelism (SP) [15] for enhanced memory
optimization. With SP, activations are collectively gathered
before a column-sharded MatMul operation within the trans-
former structure, and output activations of a row-sharded

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chang et al.

Primitive
Partition

Group
Partition

Workload
Partition

Communication
 Partition

Gradient Allreduce

MatMul
B

MatMul
A

 Weight AG B

Grad_act
B

 Weight AG B
x N

A: Forward Phase B: Backward Phase

Grad_w
B

G_w RS B

C: Weight Update Phase

Gradient RS

C: Weight Update Phase

Gradient AG

MatMul
B

MatMul
A

 Weight AG
B1

A: Forward Phase

AG
B2

MatMul
A

 Weight AG
B1

A: Forward Phase

AG
B2

B1 B2

Grad_act
B

Grad_w
B

MatMul
A

 Weight AG
B1

Grad_act
B

A: Forward Phase

Grad_w
B

AG
B2

B1 B2

MatMul
A

 Weight AG
B1

AG
B2

...
B1 B2

A: Forward Phase

G_w RS

B: Backward Phase

B: Backward Phase

G_w RSModel:
Elastic

Scheduling

Layer:
Backward

Scheduling

Operation:
Workload-

aware
Scheduling

Hierarchical
Scheduling

Computation
Track

Communication
Track

1

Reduced Cost Optimized
Parts Computation Communication Inter-

Communication
Intra-

Communication

Original Scheduling Pattern

RS

C: Weight Update Phase

AGRS AG

2

3

6

5

4

 Weight AG

 Weight AG

Optimizer
Update

AG: Allgather
RS: Reducescatter

Grad_act: backward activation computation
Grad_w: weight gradient computation

x N
RSAG

C: Weight Update
 Phase

Optimizer
Update

AGRS

Figure 3. Centauri workflow overview for a hybrid parallel training example of DP and FSDP. 1○ Primitive substitution:
Allreduce is split into reduce-scatter and allgather. 2○ Group partition: Allgather in the forward phase is split into inter-node
group and intra-node group communication. 3○ Workload partition: This step focuses on splitting collective and computation
tasks with proper granularity. 4○ Operation scheduling: overlap between two split collective and computation operations. 5○
Layer scheduling: The execution is adjusted according to the critical path within a layer. 6○ Model scheduling: Overlapping
between different phases enhances overall training efficiency.

MatMul are subsequently reduce-scattered. For activation
gathering of SP, the input shape is [𝐵/𝑃, 𝐻𝑖𝑛], while the
output tensor is of shape [𝐵,𝐻𝑖𝑛], where 𝐵 represents the
token size dimension, and 𝐻𝑖𝑛 is the hidden size dimension.
The shapes for reduce-scatter are vice versa. In inter-layer
pipeline parallelism (PP) [6, 10, 21], activation tensors are
delivered among devices through point-to-point communi-
cation primitives.

2.3 Motivations
Based on the hybrid parallel patterns, we discern two types
of dependencies between computation and communication:

• Sequential dependency: This involves a strict sequen-
tial order of computation and communication execu-
tion. An example is illustrated in the original task in
Fig 3, where the global gradient allreduce of DP in the
weight update phase depends on the backward phase.

• Non-sequential dependency: Computation and com-
munication are independent, allowing for direct over-
lapping space. However, the coarse granularity of over-
lapping might be inefficient. An example can be found
in the forward phase, where the weight pre-fetch oper-
ation allgather B overlaps with MatMul A, as depicted
in the original scheduling pattern in Fig 3, with a no-
table idle gap on the computation track.

However, given the communication-computation constraints
outlined above, the optimization space for overlapping is in-
herently limited for both types of dependencies. To break up
these constraints, it is crucial to effectively partition commu-
nication primitives, along with their dependent computation
operations. Such partitioning significantly expands the op-
timization space for overlapping. Take Fig 3 as an example.
To break up the sequential dependency of gradient allre-
duce of DP, 1○ first partitions allreduce into reduce-scatter
(RS) + allgather (AG) with primitive substitution. Then the
workload of AG is further partitioned into two chunks in 3○,
allowing for overlapping with the forward phase in 6○. For
non-sequential dependency, the weight AG for B is initially
independent of MatMul A, leading to insufficient overlap, as
seen in Fig 3. To address this, steps 2○ and 3○ involve parti-
tioning AG B and its dependent computation for optimized
scheduling, as demonstrated in 4○.

3 Overview
The workflow of Centauri includes two integral parts: com-
munication partition and hierarchical scheduling, as illus-
trated in Fig 3. The communication partition phase generates
the potential partition space and selects an efficient strat-
egy for each communication collective, considering three
fundamental dimensions. The hierarchical scheduling step
disentangles the complex hybrid parallel communication

Centauri ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 2. Primitive Substitution List

Primitive Sub-primitives Scalability

AllReduce Reduce + Broadcast x
Reduce-scatter + AllGather ✓

Reduce-Scatter Reduce + Scatter x
Reduces of distinct roots ✓

AllGather Gather + Broadcast x
Broadcasts of distinct roots ✓

collectives into three tiers. Each collective is assigned to a
specific scheduling tier. Each tier selects the partition and
scheduling scheme with lower overhead. This approach aims
to achieve an optimized overall overlapping scheme.

3.1 Communication Partition
A collective operation fundamentally acts as amapping trans-
formation of workload involving a data volume, denoted as
𝐷 , across a group of devices designated as 𝐺 . In this con-
text, we define three essential dimensions: primitive, group,
and workload, forming the basis for generating our parti-
tion space. The combination space of these dimensions is
expansive. To ensure searching efficiency among these parti-
tion patterns without losing generality, we choose to evolve
the partition space in the sequential order of the three di-
mensions. Primitive substitution establishes the fundamen-
tal communication patterns and cost models for group and
workload partitions. With a primitive pattern in place, de-
vices group can be subdivided into sub-groups. Workload
partitioning is the final step to determine the computation
operations involved in the overlapping chain and the parti-
tion dimensions of operations in the chain.

3.1.1 Primitive Substitution. A collective primitive can
be substituted by several sub-primitives, maintaining the
same communication effects, as listed in Table 2. Some of
these sub-primitives may operate at a finer granularity with
negligible partition overhead, thereby enhancing the poten-
tial for overlapping with additional computation operations.
For instance, in the context of DP, the allreduce operation
can be split into reduce and broadcast, or reduce-scatter
and allgather, enabling them to be overlapped separately by
backward and forward phases. Reduce-scatter can be further
replaced by multiple reduce operations with distinct root
ranks, while allgather can be considered equivalent to multi-
ple broadcast operations. From the point of primitive substi-
tution, an interesting observation emerges concerning the
Zero-1,2 and sequence parallelism algorithms. Specifically,
following the substitution of allreduce with reduce-scatter
and allgather, the allgather operation can strategically un-
dergo repositioning through elementwise operations. This
transformation leads to the evolution of TP and DP into SP
and Zero-1,2.

Ensuring optimal performance scalability is a key factor
in deciding on operation substitutions. Some substitutions,
which could potentially increase the total theoretical latency,
are pruned from partition space. A case in point is the choice
to favor reduce-scatter over reduce + scatter, as the latter
doubles the latency of the former. While some rooted sub-
primitives may exhibit nearly similar theoretical latency
as the original primitive, it is notable that communication
contention on the root ranks can significantly increase the
overhead of rooted collectives. Consequently, the unrooted
reduce-scatter and allgather pair are usually favored when
replacing the bottlenecked allreduce communication, espe-
cially as the number of devices largely increases.

3.1.2 Group Partition. Collective communications are
conducted within a rank group 𝐺 , which can be further
subdivided into smaller groups {𝐺1,𝐺2,𝐺3, ...} to achieve
finer communication granularity. Specific iterative execu-
tions across those groups can output results identical to those
obtained from the original group. Due to the intricate nature
of group partition space, a hierarchical group partition be-
comes necessary for aligning with the hierarchical topology
of underlying networks [37]. In a group partition scheme,
devices can be arranged into a 𝑑-dimension mesh with a
shape denoted as [𝑁1, 𝑁2, ..., 𝑁𝑑], where

∏𝑑
𝑖=1 𝑁𝑖 = |𝐺 |. Each

device of group rank 𝑟 is assigned a 𝑑 dimensional index. The
𝑘𝑡ℎ dimension of index(𝑟) is computed as (𝑟/∏𝑑

𝑖=𝑘+1 𝑁𝑖)%𝑁𝑘 .
With this abstraction, rank 𝑟 is affiliated with 𝑑 partitioned
sub-groups of {𝐺𝑟

1,𝐺
𝑟
2, ...,𝐺

𝑟
𝑑
}, where𝐺𝑟

𝑖 = {𝑘 |𝑖𝑛𝑑𝑒𝑥 (𝑘) [𝑗] =
𝑖𝑛𝑑𝑒𝑥 (𝑟) [𝑗],∀𝑗 ≠ 𝑖}. Through group partition, a collective
is executed on each sub-group with an identical traversing
order for each rank.

When pruning a group partition space with various mesh
abstractions, the primary consideration is the utilization of
topology. Parallel methods like FSDP or DP typically involve
collective communications across a group of inter-node de-
vices, leading to heterogeneity of device connections. In
a sub-group with unbalanced bandwidths, bottlenecks on
low-bandwidth links can offset the performance benefit of
high-bandwidth links. To adhere to the locality principle of
double binary tree algorithm [22], group topology partition-
ing should leverage the high bandwidth of local connections
and limit cross-node communication volume to improve com-
munication performance. Consequently, any group partition
schemes involving sub-groups with unbalanced bandwidths
are excluded from the partition space. Even with balanced
bandwidths, finer sub-group partition carries the risk of band-
width under-utilization. Within each node, NCCL establishes
multiple ring channels based on the detected link topology.
For certain architectures, like the DGX-1, finer group parti-
tion may disrupt the well-designed link topology within a
node, resulting in ring channels with significantly reduced
bandwidth. Consequently, the communication cost on these

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chang et al.

Table 3. Computation Dimension Types

Operation Workload Dims Types Partition Dims

MatMul [𝐴, 𝐵]𝑥 [𝐵,𝐶] OD, CD, OD 𝐴, 𝐵,𝐶

+, −, ∗, /,
Dropout,
ReLU, GeLU

[𝐴, 𝐵] OD, OD 𝐴, 𝐵

SwiGLU,
Softmax,
LayerNorm

[𝐴, 𝐵] OD, ND 𝐴

finely partitioned sub-groups may surpass that of direct ex-
ecution on an intra-node group, rendering finer partition
unnecessary. These considerations from topology utilization
filter out some inefficient finer group partition schemes.

3.1.3 Workload Partition. Given a primitive and group
partition scheme, the workload partition of communica-
tion triggers the partitioning of its dependent computation
chain if the overlapping space with independent compu-
tation proves insufficient. In the context of LLMs training,
communication can overlap with a sequential chain of de-
pendent computations. For example, in FSDP training, the
allgather operation can overlap with the subsequent MatMul
and activation functions, such as GeLU and Dropout. The
overall workload partition of a chain results from combining
each operation’s partition scheme.
Workload partitioning of communication and computa-

tion operations entails considering two aspects: the opera-
tions included in the partition and their partition dimensions.
The former takes into account the chain length while the
latter focuses on the compatibility of partition dimension
within the chain. Partition dimensions are related to the pat-
terns of dependent computation operations. The granularity
of partitioning is closely intertwined with operation-level
scheduling optimization, which is discussed in Section 3.2.1.
We categorize three dimension types of computation opera-
tions in LLMs training tasks:
• Contraction dimension (CD): This category involves the
contraction dimensions of operations like MatMuls and
Einsums. When a computation operation is partitioned
along this dimension, it necessitates an additional reduce
operation to aggregate the partial results.

• None-split dimension (ND): This type requires a highly
coupled computation along this dimension and is not
preferable for splitting. It includes reduced dimensions
of normalization functions.

• Other dimension (OD): This type encompasses the re-
maining workload dimensions, such as the batch dimen-
sion and none-contraction dimensions of MatMuls.

With these categories of dimension types, the possible parti-
tion space of typical computation operations is outlined in
Table 3.

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

Partition Tree of
 Communication A

on
Operation Level

Partition Tree of
Communication B

on
Operation Level

Partition Tree of
Communication N

on
Model Level

Selected Scheme of
Minimal Scheduling Cost

Original
Primititve

Sub-Primitives
Group Partitioned

Sub-Primititves
Workload + Group
+ Sub-Primititves

Figure 4.Communication partitioningworkflow for a hybrid
training task containing N communication operations.

The partition strategies for each operation in a dependent
computation chain yield multiple combinations of partition
dimensions. It’s crucial to select feasible partition combi-
nations that are compatible. For example, the output of a
MatMul partitioned along batch-dimension (first dimension)
is incompatible with a subsequent element-wise add oper-
ation partitioned along hidden size dimension (second di-
mension). After that, to optimize the overlapping effect, the
guiding principle when choosing from various compatible
partition dimensions is to identify a partition scheme that
encompasses a computation chain. This chain’s cost, com-
bined with independent computation cost, should not be
less than that of the communication operations intended for
overlapping if possible, or maximal otherwise.

In summary, the workflow abstraction of communication
partitioning is illustrated in Fig 4. Each communication in
hybrid training generates a partition space in a tree struc-
ture. Each leaf node in a tree represents a feasible partition
scheme. The selected partition scheme is chosen to have
minimal scheduling cost. The partition strategies at each
node constitute a large forest of possible partition schemes
for a hybrid training task.

3.2 Hierarchical Scheduling
With a comprehensive but large partition space of Sec 3.1,
optimizing the overlap scheduling of an entire graph be-
comes a complex task. To simplify the intricate scheduling
task, we categorize the communication patterns into three
hierarchical scheduling tiers: operation, layer, and model
levels. The operation level focuses on the communication
operation overlapping within a forward layer. It calculates
the scheduling overheads of all feasible partition schemes.
The partition and scheduling scheme with minimal overhead
is selected as the overlapping scheme for that operation.
The layer level concentrates on the optimal execution pri-
ority of a backward layer, considering the hybrid parallel
method (TP & FSDP) applied. It aims to optimize the overlap
of backward computations. The model level contains for-
ward, backward, and DP weight update phases. It focuses on
partition and flexible overlap scheduling for DP allreduce
and the other phases. With that, a lightweight hierarchical
scheduling optimization at each level contributes to a com-
prehensive and optimized overall scheduling scheme. The

Centauri ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

A B C

B C

A B C 1

B C
1 C 2

C
2

a) direct
scheduling

e) selected
scheduling

scheme
C
3

Intra-node Inter-node

0 1
0 1

2 3
2 3

4 5
4 5

6 7
6 7

0 1
0 1

2 3
2 3

0
0

4
4

0 1
4 5

2 3
6 7

C1:

C2:

C3:Computation
on

Stream A

Communi-
cation on
Stream B

C 3

A B

B C 1

C
1
C
2

Inter-node

C 2

Intra-node

d) scheduling
with

efficient
group order

0
0

4
4

C1:

C2: 0 1
4 5

2 3
6 7

0 1 2 3

GPU
id on
node

0

Tensor
id

A B

B C
1

C
2

C 2

Intra-node

C 1

Inter-node

c) scheduling
with

inefficient
group order

C1:

C2:

0 1
0 1

2 3
2 3

0
0-3

4
4-7

Task Execution on Two Streams
Allgathers across

2 nodes of 8 GPUs

C:

Timeline

b) scheduling
with

workload
partition

A B C
1

B C
1

0 1
0 1

2 3
2 3

4 5
4 5

6 7
6 7

C1-C5:
C
2

C
2

C
3

C
3
C
4

C
4

C
5

C
5

(1/5 volume
each time)

(4x
volume)

(2x volume)

GPU
id on
node

1

Intra-node

Figure 5. a) scheduling with coarse granularity results in
a large idle gap. b) fine granularity scheduling introduces
large overhead due to excessive workload partition. c) sched-
uling with a group order of large inter-node communication
overheads. d) group partition with a group order of small
inter-node and acceptable intra-node communication over-
heads. e) the selected partition and scheduling scheme with
no idle gaps.

operation and layer levels scheduling focus on the forward
and backward phases separately. The execution cost of opti-
mized forward and backward phases jointly influences the
model-level scheduling.

3.2.1 Operation Level. Fine-grained scheduling at the op-
eration level aims to efficiently overlap communication and
computation operations within each forward transformer
layer. Each layer consists of a sequence of operations. Here,
each collective is partitioned and scheduled to achieve over-
lap with dependent operations. This optimization process
ensures that the overlap strategy for each collective is de-
cided in a sequential order, thereby improving the efficiency
of the overall layer in a greedy manner.
For each collective, different scheduling schemes based

on various partitioning patterns result in distinct overall
performance. Overly fine-grained workload partitioning can
result in nearly full overlap of communication and computa-
tion, but it may negatively impact overall performance due
to multiple small GPU kernel launches and data movement
overheads, as shown in Fig 5.b. Therefore, strategies with

Algorithm 1: Operation Level Strategy
Input :comp_cost, comm_cost, cost_inter, cost_intra,

// cost of inter&intra group communication
inter_size, intra_size, //inter&intra group sizes
in_cost // cost of independent operations

1 num_chunks = MAX_CHUNKS;
2 if in_cost < comm_cost then
3 // even workload partition
4 if 0 < in_cost then
5 num_chunks = min(𝑐𝑜𝑚𝑚_𝑐𝑜𝑠𝑡

𝑖𝑛_𝑐𝑜𝑠𝑡 , 𝑛𝑢𝑚_𝑐ℎ𝑢𝑛𝑘𝑠) ;
6 end
7 granularity = [1

𝑛𝑢𝑚_𝑐ℎ𝑢𝑛𝑘𝑠] x 𝑛𝑢𝑚_𝑐ℎ𝑢𝑛𝑘𝑠;
8 // uneven group workload partitioning
9 if is_group_partitioned then
10 if in_cost > cost_inter then
11 // inter-node launched first
12 granularity = [𝑖𝑛𝑡𝑒𝑟_𝑠𝑖𝑧𝑒

𝑤𝑜𝑟𝑙𝑑_𝑠𝑖𝑧𝑒 , 1-
𝑖𝑛𝑡𝑒𝑟_𝑠𝑖𝑧𝑒
𝑤𝑜𝑟𝑙𝑑_𝑠𝑖𝑧𝑒];

13 else
14 // intra-node launched first
15 if 𝑐𝑜𝑚𝑝_𝑐𝑜𝑠𝑡

𝑖𝑛𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 > 𝑖𝑛𝑡𝑟𝑎_𝑠𝑖𝑧𝑒 ∗ 𝑐𝑜𝑠𝑡_𝑖𝑛𝑡𝑒𝑟
then

16 granularity=[𝑖𝑛𝑡𝑟𝑎_𝑠𝑖𝑧𝑒
𝑤𝑜𝑟𝑙𝑑_𝑠𝑖𝑧𝑒 ,1-

𝑖𝑛𝑡𝑟𝑎_𝑠𝑖𝑧𝑒
𝑤𝑜𝑟𝑙𝑑_𝑠𝑖𝑧𝑒];

17 else
18 // finer workload partitioning
19 granularity=[𝑖𝑛𝑡𝑟𝑎_𝑠𝑖𝑧𝑒

𝑤𝑜𝑟𝑙𝑑_𝑠𝑖𝑧𝑒 ,
𝑖𝑛𝑡𝑒𝑟_𝑠𝑖𝑧𝑒−1
𝑤𝑜𝑟𝑙𝑑_𝑠𝑖𝑧𝑒 ,

1 − 𝑖𝑛𝑡𝑒𝑟_𝑠𝑖𝑧𝑒+𝑖𝑛𝑡𝑟𝑎_𝑠𝑖𝑧𝑒−1
𝑤𝑜𝑟𝑙𝑑_𝑠𝑖𝑧𝑒] ;

20 end
21 end
22 end
23 else
24 // no need for partitioning
25 num_chunks = 1, granularity = [1];
26 end

Output :granularity

larger granularity are preferable. Meanwhile, with group par-
titioning, it is crucial to have bandwidth-aware scheduling
with an appropriate order of inter- and intra-node communi-
cation, as highlighted in the comparison of Fig 5.c and d. A
proper interleaved intra- and inter-node scheduling scheme,
based on group and workload partitioning, strikes a balance
for maximum performance improvement in Fig 5.e. There-
fore, proper interleaved execution of intra- and inter-node
communication with proper partition granularity is the key
issue.
With the above considerations, operation-level schedul-

ing with appropriate partition granularity is presented in
Algorithm 1. If the communication cost is lower than the in-
dependent computation cost 𝑖𝑛_𝑐𝑜𝑠𝑡 , communication can be

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chang et al.

G_actG_w

W_AG G_w_
RS

act
AG

a) Baseline G_act G_w

W_AG G_w_
RS

G_act G_w

W_AG G_w_
RS

act_
AR

G_act G_w

W_AG G_w_
RS

G_act G_w

W_AG G_w_
RS

act
AG

act
AG

act
RS

b) Megatron

c) Layer Level
Scheduling

critical path of activation gradient critical path of weight gradient

Timeline

other computation within a layer

G_actG_w

W_AG G_w_
RS

act
AG

act
RS

Figure 6. Layer-level Backward Scheduling of simplified TP
and FSDP methods. a) OOO propagation [27] that activation
computation is scheduled with higher priority. b) Megatron-
LM sequence parallel method [15] that aims at overlapping
activation communication. c) Centauri schedules critical path
to maximize overlapping.

fully overlapped by independent operations and is not parti-
tioned (line 24-25). Otherwise, partitioning is considered, and
a maximum number of partitioned chunks𝑀𝐴𝑋_𝐶𝐻𝑈𝑁𝐾𝑆
is set to prevent excessive partitioning. In line 3-7, to fully
utilize the independent computation, collectives are evenly
partitioned according to 𝑖𝑛_𝑐𝑜𝑠𝑡 . For group partitioning of
allgather, the bandwidth-limited inter-node commutation
is always the bottleneck. In line 10-12, if inter-node com-
munication can be directly overlapped by independent op-
erations, the allgather is partitioned into an inter-node all-
gather and an intra-node allgather. The output of inter-node
allgather represents 𝑖𝑛𝑡𝑒𝑟_𝑠𝑖𝑧𝑒

𝑤𝑜𝑟𝑙𝑑_𝑠𝑖𝑧𝑒 of the total workload. The
intra-node allgather gathers the output of the inter-node
allgather. Therefore, the workload partition granularity is
[𝑖𝑛𝑡𝑒𝑟_𝑠𝑖𝑧𝑒
𝑤𝑜𝑟𝑙𝑑_𝑠𝑖𝑧𝑒 , 1 −

𝑖𝑛𝑡𝑒𝑟_𝑠𝑖𝑧𝑒
𝑤𝑜𝑟𝑙𝑑_𝑠𝑖𝑧𝑒]. In line 14-20, the intra-node all-

gather is launched first. If inter-node communication can
be overlapped by the computation of intra-node allgather
output, finer workload partition is unnecessary in line 15-16.
Otherwise, inter-node communication is further partitioned
to minimize cross-node communication for better overlap.

3.2.2 Layer Level. Unlike the forward phase, where effi-
cient overlap relies on partitioning, the backward phase has
a natural scheduling space. The backward computation of
a forward operation involves two independent parts: acti-
vation gradient computation and weight gradient computa-
tion. Traditionally, activation computation has been assigned
higher scheduling priority in previous works [21, 27] since
its output serves as input for the back-propagation of the
preceding operation as depicted in Fig 6 a, b. Nevertheless, in
hybrid parallel configurations, different execution priorities
of these two parts lead to varying latency. With that, we dis-
tinguish two critical paths of activation and weight gradient

computation. Different scheduling priorities of these two
interleaved paths within a layer result in different costs:

𝑇1 = 𝑇 (𝑊 _𝐴𝐺) +𝑚𝑎𝑥 (𝑇 (𝐺_𝑎𝑐𝑡),𝑇 (𝑎𝑐𝑡_𝐴𝐺))+
𝑚𝑎𝑥 (𝑇 (𝐺_𝑤),𝑇 (𝑎𝑐𝑡_𝑅𝑆)) +𝑚𝑎𝑥 (𝑇 (𝐺_𝑤_𝑅𝑆),𝑇 (𝑜𝑡ℎ𝑒𝑟𝑠))

𝑇2 = 𝑇 (𝑎𝑐𝑡_𝐴𝐺) +𝑚𝑎𝑥 (𝑇 (𝐺_𝑤),𝑇 (𝑊 _𝐴𝐺))+
𝑚𝑎𝑥 (𝑇 (𝐺_𝑎𝑐𝑡),𝑇 (𝐺_𝑤_𝑅𝑆)) +𝑇 (𝑎𝑐𝑡_𝑅𝑆) +𝑇 (𝑜𝑡ℎ𝑒𝑟𝑠)

(1)
𝑇1 corresponds to the related cost of activation gradient com-
putation scheduled with higher priority, which is adopted in
a single TP scenario. The four terms in 𝑇1 delineate the time
costs associated with weight pre-fetch, overlapped compu-
tation with TP collectives, and overlapped weight gradient
reduction with other operations, respectively. 𝑇2 represents
the corresponding cost when weight gradient computation is
assigned a higher priority, for better overlapping in the FSDP
case as shown in Fig 6 c. The four terms in 𝑇2 encapsulate
the costs related to activation communication, overlapped
computation and FSDP collectives, and other computational
costs. The final scheduling scheme within a backward layer
hinges on the minimal cost between 𝑇1 and 𝑇2.

3.2.3 Model Level. Model level overlapping aims to hide
the communication of gradients and weights with forward
and backward phases. In a single DP scenario of Centauri,
after the partition process, allgather is overlapped with the
forward phase, while reduce-scatter is overlapped with the
backward phase chunk-by-chunk in a fine-grained manner.
In hybrid DP and PP training, fine-grained pipeline sched-
uling strategies aim to reduce pipeline bubbles, which influ-
ence the overlap of computation and communication. The
overheads of a micro-batch of model chunk computation
are usually smaller than the related gradients or weights
communication. Launching several micro-batches of an iden-
tical model chunk releases the potential of overlapping, but
activation memory consumption also grows with the num-
ber of micro-batches launched together. Memory and time
cost are two factors influencing the design of the pipeline
scheduling scheme. To save memory consumption, depth-
first scheduling chooses a minimal number of micro-batches
launched together, equal to the pipeline stage depth. It ig-
nores the overlapping potential for end-to-end performance
improvement, as depicted in Fig 7.b. Meanwhile, breadth-first
scheduling goes to the other radical direction of launching
all micro-batches of size𝑚𝑏 per batch for overlapping with
large peak memory consumption, as illustrated in Fig 7.c.
The trade-off lies in the memory-minimized scheduling and
overlapping maximized scheduling.
Model level overlapping scheduling of PP+DP mainly fo-

cuses on launching proper numbers of forward and back-
ward micro-batches for maximal overlap with partitioned
allreduce. It is constrained by the remaining memory capac-
ity𝑀 of devices, apart from other memory consumption of

Centauri ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

5 6 7 8 5 6 7 8 9 10 11 12 9 10 11 121 2 3 4 1 2 3 4 13 14 15 16 13 14 15 16... Allreduce

c) Breadth-
First

d) Model Level
Scheduling Reduce-

Scatter

b) Depth-
First

a) Baseline

5 6 7 8 5 6 7 81 2 3 4 1 2 3 4 ...

5 6 7 8 131415161 2 3 4 9101112 ...

5 9 10 11 9 10 111 2 3 4 ...6 7 8

9 10 11 12 9 10 11 12 13 14 15 16 13 14 15 16

1 2 3 4 9 10 11 125 6 7 8 13 14 15 16

12 13 14 15 1612 13 14 15 16

Forward Phase Backward Phase Weight Update Phase

i

i

Backward Pass of
Microbatch i

i

i
2 stages

Forward Pass of
Microbatch i

Allgather

51 2 3 4 6 7 8

Allreduce

Allreduce Allreduce

AllreduceAllreduce

AllgatherReduce-
Scatter

(4x Memory)

(16x Memory)

(8x Memory)

Figure 7.Model level scheduling of DP and PP: each case shows micro-batch scheduling and memory consumption of the first
stage of PP group within each iteration. a) A sequential execution of forward, backward, and weight update phases, with an
interleaved pipeline of 2 stages for each device, 16 micro-batches per batch, and a depth of 4. b) Direct overlap allreduce of the
second stage with backward of the first stage, with minimal memory cost of 4x activation. c) All micro-batches (16) launched
together for maximal overlapping, with a maximal memory cost of 16x activation. d) Minimal number (8) of micro-batches
launched together for well overlapping, with medium memory cost of 8x activation.

weights and gradients buffer, etc. Due to the different com-
putation patterns and overheads of forward and backward
phases, they may demand different launched micro-batches.
The overall overlapping optimization problem can be set as
follows:

min 𝑇 =𝑚𝑎𝑥{𝐶𝐴𝐺 − 𝐿1 ∗𝐶𝑓 𝑤, 0}+
𝑚𝑎𝑥{𝐶𝑅𝑆 − 𝐿2 ∗𝐶𝑏𝑤, 0}

𝑠 .𝑡 . 𝐿1 ∗𝑚 ≤ 𝑀, 𝐿2 ∗𝑚 ≤ 𝑀, 𝐿1 + 𝐿2 ≤ 𝑚𝑏
(2)

𝐶𝑜𝑝 (𝑜𝑝 ∈ {𝐴𝐺, 𝑅𝑆, 𝑓 𝑤,𝑏𝑤}) represents the relative opera-
tion cost of each stage, and 𝐿1 and 𝐿2 are the optimization
variable numbers of micro-batches launched together in for-
ward and backward phases for overlapping. The first term of
the objective function is the un-overlapped overheads of for-
ward computation and allgather, while the second term is of
backward computation and reduce-scatter. The constraints,
where𝑚 is the memory overhead of each forward execution,
make the memory consumption under the remaining device
capacity𝑀 .

4 Implementation
We implement Centauri within Megatron-LM [21], a widely-
used training framework for LLMs. We encapsulate the for-
ward and backward passes of the transformer [38] layer with
different partition and scheduling strategies. For partition-
ing, we organize the hybrid parallel communication groups
into topology-aware sub-groups and designate workload
partition strategies. For the operation level, the segmented
computation chain is executed with asynchronous commu-
nication in a loop style. The executed critical path is sched-
uled according to the designation for max overlapping. For
the model level, we develop a new distributed reducer, op-
timizer, and pipeline scheduler. The reducer and optimizer
support the dynamic overlapping between phases with the

hook mechanism of PyTorch, while the pipeline scheduler
elastically launches required micro-batches together. The
overlapping optimization scheme is compatible with a range
of hybrid parallel training methods of DP, FSDP, TP, and PP.
The general hardware-agnostic idea can be applied to other
LLM training frameworks.

5 Evaluation
Testbed Our experiments were conducted on two GPU clus-
ters: Cluster A and Cluster B. In Cluster A, each node com-
prises 8 NVIDIA A100-80G GPUs [23] interconnected with
NVSwitch [26], providing a bandwidth of 600 GB/s. The de-
vices within Cluster A nodes are connected to the host via
PCIe 3.0 x16, offering a total data transfer bandwidth of 16
GB/s. 8 devices within a Cluster A node share an InfiniBand
HDR port with 200 Gb/s, with 25 Gb/s per device. On the
other hand, Cluster B nodes are equipped with 4 InfiniBand
HDR ports, resulting in significantly higher cross-node band-
widths of 100 Gb/s per device. Our software environment
includes CUDA 11.7, NCCL 2.14 [24], Pytorch 2.0.0 [42], and
Megatron-LM (git-hash e6d7e09).

Table 4. 3 LLaMA size settings

Size Dimension n heads n layers Seq len
Small 4096 32 18 2048
Medium 5120 40 15 2048
Big 6656 52 8,10,30 2048
Large 8192 64 8 2048

Model and Metric Numerous open-source large models
are constructed on transformer-based architectures [1, 5, 7],
among which LLaMA [35] stands out as one of the most
competitive and widely adopted structures. For our evalu-
ation, we selected four representative sizes of the LLaMA

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chang et al.

1 2 4 8
0

50
100
200
250

TF
LO

PS
 /

GP
U

1x 1.
09

x
1.

24
x

1x 1.
12

x
1.

29
x

1x 1.
20

x
1.

38
x

1x
1.

20
x

1.
39

x

Small

1 2 4 8
0

50
100
200
250

1x 1.
03

x
1.

24
x

1x 1.
14

x
1.

31
x

1x 1.
18

x
1.

39
x

1x
1.

19
x

1.
40

x

Medium

1 2 4 8
0

50
100
200
250

1x 1.
17

x
1.

33
x

1x 1.
16

x
1.

33
x

1x 1.
20

x
1.

40
x

1x
1.

19
x 1.
43

xBig

1 2 4 8
0

50
100
200
250

1x 1.
07

x
1.

15
x

1x 1.
16

x
1.

35
x

1x 1.
20

x
1.

41
x

1x
1.

19
x 1.
46

xLarge
FSDP/Zero3 FSDP/Zero3 direct overlap Centauri

Figure 8. Performance of FSDP/Zero3 tasks on 2 nodes of Cluster A, with FSDP group size 16.

1 2 4 8
0

50
100
150
200

TF
LO

PS
 /

GP
U

1x 1.
02

x
1.

05
x

1.
05

x
1.

11
x

1x 1.
09

x
1.

19
x

1x 1.
19

x
1.

36
x

1x
1.

25
x

1.
41

x

Small

1 2 4 8
Micro Batch Size

0
50

100
150
200

1x 1.
03

x
1.

12
x

1x 1.
09

x
1.

23
x

1x 1.
17

x
1.

38
x

1x
1.

22
x

1.
36

x

Medium

1 2 4 8
0

50
100
150
200

1x 1.
00

x
1.

09
x

1x 1.
07

x
1.

18
x

1x 1.
16

x
1.

34
x

1x
1.

25
x

1.
45

xBig
Zero1+2 DDP overlap OOO backp Zero1+2 direct overlap Centauri

Figure 9. Performance of DP tasks on 2 nodes of Cluster A, with DP group size of 16.

model to showcase the effectiveness of Centauri, as outlined
in Table 4. We calculated the evaluation metric by dividing
the attention and MLP computation FLOP per GPU by the
end-to-end time cost to gauge performance.
Baseline We compare Centauri with several baselines.

• Zero1,2,3 [29]: Zero1,2,3 partition strategies are exten-
sively employed in LLM training. At each level, these
strategies partition gradients, optimizer states, and pa-
rameters across DP groups.

• PyTorch DDP [18]: PyTorch’s DistributedDataParallel
(DDP) serves as an implementation facilitating backward
computation and gradient allreduce overlapping strate-
gies.

• OOO back-propagation [27]: Out-of-order backpropa-
gation orchestrates the sequence of backward operations
to optimize the overlap of gradient allreduce.

• Megatron-LM [21]: Megatron-LM is a widely adopted
framework for high-performance hybrid training, inte-
grating TP (SP), DP, and PP.

To ensure fairness in comparison, the fundamental method-
ologies of listed baselines are transposed onto Megatron-
LM to neutralize the impact of unrelated frameworks’ tech-
niques.
The evaluation of Centauri includes four parts: perfor-

mance enhancement for bottleneck single parallel tasks like
FSDP and DP, an enhancement ablation study focusing on
two prevalent hybrid parallel tasks (FSDP+DP and TP+PP+DP),

a scalability case study of communication-demanding tasks
(FSDP and FSDP+DP), and a detailed case study.

5.1 Single Parallel Performance
DP and FSDP groups typically span across nodes. Conse-
quently, to comprehensively evaluate the combination of
three partition dimensions in a single parallel method, we
conduct an in-depth analysis of the performance improve-
ments in FSDP and DP tasks.
For FSDP training, both group and workload partition-

ing strategies are utilized. Across various model configura-
tions and overlapping methods, similar trends in throughput
enhancement are observed with respect to batch size per
device, as depicted in Fig 8. Smaller batch sizes result in
computation overheads that are significantly smaller than
communication latency, resulting in substantial idle periods
on the computation resource and limited throughput even
after enabling overlapping techniques. Therefore, the scope
for performance improvement is limited, primarily depend-
ing on optimizing layer-level backward FSDP scheduling
rather than finer partitioning. In contrast, for larger batch
sizes with a reasonable ratio between communication and
computation cost, the speedup over the FSDP/Zero3 baseline
is amplified. In this scenario, the adopted partition strategy
involves a looped intra-node and inter-node workload sched-
uling approach. Moreover, the improvements are also more

Centauri ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

notable in larger model sizes, showing robust weak scalabil-
ity concerning both data and model sizes and resulting in
over 1.4× throughput enhancements.
In DP training, both primitive and workload partition-

ing are adopted. The allreduce operation is partitioned into
reduce-scatter and allgather. The allgather phase can traverse
through the element-wise optimizer operations, minimizing
redundant optimizer memory usage and computation over-
heads. By employing a customized reducer for the partitioned
allreduce, the backward phase is overlapped with the gradi-
ent reduce-scatter, and the forward phase is overlapped with
weight allgather. Similar to FSDP, larger batch sizes yield
higher computation granularity for overlapping and demon-
strate promising throughput enhancement compared to the
other baselines, as shown in Fig 9. However, in the cases
of Torch DDP and OOO back-propagation, they frequently
encounter out-of-memory (OOM) issues due to excessive
memory consumption and the OOM cases are omitted in
Fig 9.

5.2 Hybrid Parallel Performance
In hybrid parallel performance evaluation, we assess two typ-
ical hybrid parallel setups: FSDP+DP (Fig 10) and TP+PP+DP
(Fig 11). In FSDP+DP training tasks, Centauri demonstrates
throughput enhancements across various FSDP andDP group
configurations compared to Zero1+2+3 baselines. In settings
such as DP3+FSDP16, FSDP and DP communications span
across nodes, resulting in substantial overheads. A weight
tensor requires 2 pre-fetch allgather and a gradient reduce-
scatter for full tensor in the FSDP setting. Meanwhile, DP
requires an allreduce for weight-sharded tensors. The band-
width latency for FSDP surpasses that of DP by a near fac-
tor of 3/2, plus the size of FSDP group. Consequently, the
enhancements attributed to FSDP overlapping largely dic-
tate the overall performance improvements. Conversely, in
DP6+FSDP8 and DP12+FSDP4 settings where FSDP’s com-
munication group is deployed on intra-node devices with
higher bandwidths, DP overlapping plays a more substantial
role in the performance improvement. Centauri leverages
the overlapping benefits of both methods to achieve overall
high-performance results.
In TP+PP+DP training tasks, Centauri presents maximal

throughput over Megatron-LM and other overlapping meth-
ods across various TP, PP, and DP group configurations. DP
collective operations distinctly dominate the communication
bottleneck compared to the minor communication overheads
of intra-node TP communications and PP activation transfers
(less than 5% in our settings). In configurations with larger
batch sizes such as TP4+PP3+DP4+BS4, Centauri overlaps
the segmented gradient reduce-scatter and weight allgather
with a PP depth size of micro-batches, which is a direct over-
lapping with interleaved 1F1B scheduling. Conversely, in
small batch size settings, Centauri increases the number of
overlapping micro-batches to 6, ensuring acceptable memory

DP3 FSDP16 DP6 FSDP8 DP12 FSDP40
25
50
75

100
125
150
175
200

TF
LO

PS
 /

GP
U

1x 1.
06

x 1.
32

x

1.
02

x 1.
40

x

1x 1.
07

x

1.
01

x 1.
33

x

1.
35

x

1x

1.
26

x

1.
06

x

1.
47

x

1.
49

x

Big

Zero1+2+3
Zero1+2+3 overlap

Centauri FSDP
Centauri DP

Centauri both

Figure 10. Performance of FSDP+DP tasks on 6 nodes of
Cluster A, with a total group size of 48.

TP2 PP3 DP8 BS1 TP4 PP3 DP4 BS2 TP4 PP3 DP4 BS40

20

40

60

80

100

120

TF
LO

PS
 /

GP
U

1x 1.
03

x

1.
15

x

1.
27

x

1x 1.
01

x

1.
14

x 1.
33

x

1x 1.
01

x

1.
11

x

1.
11

x

Big

Megatron-LM
PP+TP overlap

PP+DP direct overlap
Centauri scheduling

Figure 11. Performance of TP+PP+DP tasks on 6 nodes of
Cluster A, with a total group size of 48 and total gradient
accumulation steps of 6.

consumption for fully overlapping. Overall, Centauri exhibits
elastic micro-batch scheduling for maximal DP overlapping
efficacy across different settings.

5.3 Performance Scalability
To evaluate the scalability of Centauri, we carry out exper-
iments on two distinct network environments: Cluster A
and B, each characterized by distinct bandwidth conditions.
In Cluster A, which represents a bandwidth-limited envi-
ronment, Centauri significantly increased the throughput
of FSDP/Zero3 configurations, as depicted in Fig 13. The
achieved throughput levels were comparable to those in
high-performance environments (Cluster B), highlighting
the bandwidth-agnostic capability of Centauri. Despite the
limited potential for performance improvement in Cluster B,
Centauri still managed to enhance the throughput by nearly
5% on 256 GPUs. Fig 14 illustrates the scalability of Centauri
in communication-demanding FSDP+DP configurations. In
the initial phase, all six settings experience a drop in through-
put due to increased DP communication overheads. However,
Centauri consistently maintains a high speedup compared to
other baselines in Cluster A and achieves double the speedup
rates of Zero1+2+3 direct overlapping in Cluster B.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chang et al.

G_act
C G_w C

Weight Allgather C Gradient ReduceScatter C

G_act CG_w C

Weight Allgather C Gradient ReduceScatter C

G_act CG_w C

Weight Allgather C Gradient ReduceScatter C

Allgather C Allgather D

C D

B Allgather A

C 1 D 1A 2 Attn

B A 1

B

Allgather C Allgather D

A B

B Allgather A

C D

A B

A 2

 A 1

G_act CG_w C

Weight Allgather C Gradient ReduceScatter CAllgather D

C 1 DA 2 Attn

B A1

B

A 2

A 1

C 1 C 2 C 3

C 2 C 3

Direct
Overlap
BS=1

Centauri
BS=1

Centauri
BS=4

Centauri
BS=8

C 1 D 1 D 2

D 2

Forward Phase Backward Phase
Computation

Stream

Communication
Stream

Intra-node
Allgather on

Comm Stream

Inter-node
Allgather on

Comm Stream
C 2 C 3

C 2 C 3

C 4

C 4

Figure 12. For a Big transformer layer in FSDP training, different communication partition strategies are employed under
various batch sizes. Computation chunks, denoted as 𝐴, 𝐵,𝐶, 𝐷 , are MatMuls with large weight inputs. Communication chunks
involve allgathers responsible for gathering the shared weights.

32 64 96 128 160 192 224 256
Number of GPUs

60
80

100
120
140
160
180
200

TF
LO

PS
 /

GP
U

Zero3 A
Zero3 olp A

Centauri A
Zero3 B

Zero3 olp B
Centauri B

Figure 13. Scalability of FSDP/Zero3 on Cluster A&B

32 64 96 128 160 192 224 256
Number of GPUs

60
80

100
120
140
160
180
200

TF
LO

PS
 /

GP
U

Zero1+2+3 A
Zero1+2+3 olp A

Centauri A
Zero1+2+3 B

Zero1+2+3 olp B
Centauri B

Figure 14. Scalability of FSDP16+DP on Cluster A&B

5.4 FSDP Case Study
FSDP tasks are overlap-demanding, given their frequent and
large volumes of communication. Speedup upper bound is
determined by several factors, including the communication
cost ratio 𝛼 , data dependencies, and hardware capacity. We
conduct a case study using FSDP to explore the impact of
different communication cost ratios. The theoretical speedup

upper bound is given by min{ 1
𝛼
, 1
1−𝛼 }. A speedup of 1

𝛼
in-

dicates that computation can be fully overlapped by com-
munication when 𝛼 is larger than 0.5. On the other hand, a
speedup of 1

1−𝛼 suggests that communication is fully over-
lapped when 𝛼 is smaller than 0.5. Specifically, we analyze
the forward and backward phases of a transformer layer
with varying batch sizes, as illustrated in Fig 12. For a small
batch size (BS=1), 𝛼 is large, limiting the achievable speedup.
As the batch size increases to 4, 𝛼 decreases, allowing for a
larger speedup. The overlap patterns for the operators within
a transformer layer also become more diverse. As the com-
putation ratio exceeds the communication ratio with a batch
size of 8, full overlap of communication by computation is
enabled with different partition and scheduling patterns.

6 Related Work
Communication Optimization To enhance training per-
formance, various studies have aimed to reduce bottleneck
communication overheads. Some auto-parallelismworks out-
put optimal parallel schemes to minimize communication
overheads [12, 43]. Additionally, high-performance collec-
tive communication libraries [8, 24, 34] focus on optimizing
performance based on the characteristics of underlying hard-
ware environments. Recent implementations of hierarchical
allreduce [3, 13, 36, 37] have highlighted the importance of
efficient bandwidths utilization in heterogeneous environ-
ments. Several frameworks [2, 4, 31, 39] generate specific
communication kernels tailored to complex network envi-
ronments. Despite these customized optimizations, commu-
nication overheads still constitute a significant portion of
the total cost due to the exponential scaling-up of training
networks.
Communication Overlapping Some frameworks [9, 17, 18,
20, 27, 28, 41, 42] aim to optimize the overlap scheduling of
a single parallel method in a coarse-grained manner, which

Centauri ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

may under-utilize hardware resources. Conversely, some so-
phisticated compiler-style works [11, 40] generate code for
fine-grained overlapping between two kernels, but they may
miss opportunities for graph-level scheduling. Additionally,
the kernel launch and data movement overheads associated
with overly fine-grained kernel partitioning may counteract
the benefits of overlapping. Recent studies have explored
concurrent communication execution across multi-streams
[20, 32], which can also enhance training performance. How-
ever, those works lack a comprehensive partition abstraction
and systematic scheduling for efficient overlapping schemes
in hybrid parallel LLMs training.

7 Conclusions
We put forward Centauri, a framework for efficient commu-
nication and computation overlap in LLMs training tasks. It
includes efficient communication partition of three dimen-
sions: primitive, group, and workload, and a hierarchical
scheduling scheme of three tiers: operation, layer, and model.
We show that Centauri significantly improves the perfor-
mance of LLMs training.
In contrast to the static and intensive computation pat-

tern observed in LLMs training, parallel LLMs inference
faces challenges associated with small-volume but frequent
communication overheads. In the future, we will explore
communication challenges of parallel inference with two
aspects: 1) coalesce small-volume communication and par-
allelize tasks with low-frequency communication patterns,
2) more fine-grained communication scheduling that aligns
with the warp-level computation scheduling capabilities of
GPUs within the NCCL framework.

8 Acknowledgments
We thank the anonymous reviewers and our shepherd, Ab-
hinav Jangda, for their valuable insights and feedback.

References
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, ed-
itors, Advances in Neural Information Processing Systems, volume 33,
pages 1877–1901. Curran Associates, Inc., 2020.

[2] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd
Mytkowicz, Jacob Nelson, and Olli Saarikivi. Synthesizing optimal
collective algorithms. In Proceedings of the 26th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP ’21,
page 62–75, New York, NY, USA, 2021. Association for Computing
Machinery.

[3] C. Chen, M. Li, and C. Yang. bbtopk: Bandwidth-aware sparse allreduce
with blocked sparsification for efficient distributed training. In 2023

IEEE 43rd International Conference on Distributed Computing Systems
(ICDCS), pages 1–11, Los Alamitos, CA, USA, jul 2023. IEEE Computer
Society.

[4] Meghan Cowan, Saeed Maleki, Madan Musuvathi, Olli Saarikivi, and
Yifan Xiong. Gc3: An optimizing compiler for gpu collective commu-
nication. 2022.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language
understanding. In Jill Burstein, Christy Doran, and Thamar Solorio,
editors, Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Min-
neapolis, Minnesota, June 2019. Association for Computational Lin-
guistics.

[6] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen
Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao,
Xiaoyong Liu, and Wei Lin. Dapple: A pipelined data parallel approach
for training large models. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
’21, page 431–445, New York, NY, USA, 2021. Association for Comput-
ing Machinery.

[7] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity.
CoRR, abs/2101.03961, 2021.

[8] Richard L. Graham, Galen M. Shipman, Brian W. Barrett, Ralph H.
Castain, George Bosilca, and Andrew Lumsdaine. Open mpi: A high-
performance, heterogeneous mpi. In 2006 IEEE International Conference
on Cluster Computing, pages 1–9, 2006.

[9] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Campbell. Tic-
tac: Accelerating distributed deep learning with communication sched-
uling. In A. Talwalkar, V. Smith, and M. Zaharia, editors, Proceedings
of Machine Learning and Systems, volume 1, pages 418–430, 2019.

[10] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu
Chen, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,
Yonghui Wu, and Zhifeng Chen. GPipe: Efficient Training of Giant
Neural Networks Using Pipeline Parallelism. Curran Associates Inc.,
Red Hook, NY, USA, 2019.

[11] Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hossein Nodehi Sabet,
Saeed Maleki, Youshan Miao, Madanlal Musuvathi, Todd Mytkowicz,
and Olli Saarikivi. Breaking the computation and communication
abstraction barrier in distributed machine learning workloads. In
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’22, page 402–416, New York, NY, USA, 2022. Association for Comput-
ing Machinery.

[12] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model
parallelism for deep neural networks. CoRR, abs/1807.05358, 2018.

[13] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-
iong Guo. A unified architecture for accelerating distributed DNN
training in heterogeneous GPU/CPU clusters. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20),
pages 463–479. USENIX Association, November 2020.

[14] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. Scaling laws for neural language models. CoRR,
abs/2001.08361, 2020.

[15] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee,
Michael Andersch, Mohammad Shoeybi, and Bryan Catanzaro. Reduc-
ing activation recomputation in large transformer models, 2022.

[16] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-Gon Chun.
Nimble: Lightweight and parallel gpu task scheduling for deep learn-
ing. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020.
Curran Associates Inc.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Chang et al.

[17] Joel Lamy-Poirier. Breadth-first pipeline parallelism, 2023.
[18] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis,

Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and
Soumith Chintala. Pytorch distributed: Experiences on accelerating
data parallel training. CoRR, abs/2006.15704, 2020.

[19] Shigang Li and Torsten Hoefler. Chimera: Efficiently training large-
scale neural networks with bidirectional pipelines. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’21, New York, NY, USA, 2021. Association
for Computing Machinery.

[20] Kshiteej Mahajan, Ching-Hsiang Chu, Srinivas Sridharan, and Aditya
Akella. Better together: Jointly optimizing ML collective scheduling
and execution planning using SYNDICATE. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23), pages 809–
824, Boston, MA, April 2023. USENIX Association.

[21] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee,
and Matei Zaharia. Efficient large-scale language model training on
gpu clusters using megatron-lm. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’21, New York, NY, USA, 2021. Association for Computing
Machinery.

[22] NVDIA. Massively scale your deep learning training with nccl
2.4. https://developer.nvidia.com/blog/massively-scale-deep-learning-
training-nccl-2-4/.

[23] NVIDIA. Nvidia dgx a100 system architecture. https:
//images.nvidia.com/aem-dam/en-zz/Solutions/data-center/dgx-
a100/dgxa100-system-architecture-white-paper.pdf, 2020.

[24] NVIDIA. NVIDIA Collective Communication Library (NCCL) Doc-
umentation. https://docs.nvidia.com/deeplearning/nccl/user-guide/
docs/index.html, 2022.

[25] NVIDIA. NVLINK. https://www.nvidia.com/en-us/data-center/
nvlink/, 2022.

[26] NVIDIA. NVSWITCH: The world’s highest-bandwidth on-node
switch. https://images.nvidia.com/content/pdf/nvswitch-technical-
overview.pdf, 2022.

[27] Hyungjun Oh, Junyeol Lee, Hyeongju Kim, and Jiwon Seo. Out-of-
order backprop: An effective scheduling technique for deep learning.
In Proceedings of the Seventeenth European Conference on Computer Sys-
tems, EuroSys ’22, page 435–452, New York, NY, USA, 2022. Association
for Computing Machinery.

[28] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang
Lan, Chuan Wu, and Chuanxiong Guo. A generic communication
scheduler for distributed dnn training acceleration. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP ’19,
page 16–29, New York, NY, USA, 2019. Association for Computing
Machinery.

[29] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
Zero:Memory optimizations toward training trillion parametermodels.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’20. IEEE Press, 2020.

[30] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He.
Deepspeed: System optimizations enable training deep learning mod-
els with over 100 billion parameters. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Min-
ing, KDD ’20, page 3505–3506, New York, NY, USA, 2020. Association
for Computing Machinery.

[31] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki,
Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and
Rachee Singh. Synthesizing collective communication algorithms for
heterogeneous networks with taccl. arXiv preprint, 2021.

[32] Shaohuai Shi, Xiaowen Chu, and Bo Li. Exploiting simultaneous
communications to accelerate data parallel distributed deep learning.

IEEE INFOCOM 2021 - IEEE Conference on Computer Communications,
pages 1–10, 2021.

[33] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-lm: Training multi-
billion parameter language models using model parallelism. CoRR,
abs/1909.08053, 2019.

[34] Rajeev Thakur and William D Gropp. Improving the performance
of collective operations in mpich. In European Parallel Virtual Ma-
chine/Message Passing Interface Users’ Group Meeting, pages 257–267.
Springer, 2003.

[35] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

[36] Thao Nguyen Truong, Mohamed Wahib, and Ryousei Takano. Ef-
ficient mpi-allreduce for large-scale deep learning on gpu-clusters.
Concurrency and Computation: Practice and Experience, 33, 12 2019.

[37] Yuichiro Ueno and Rio Yokota. Exhaustive study of hierarchical allre-
duce patterns for large messages between gpus. In 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pages
430–439, 2019.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[39] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Jorgen
Thelin, Nikhil R. Devanur, and Ion Stoica. Blink: Fast and generic
collectives for distributed ML. CoRR, abs/1910.04940, 2019.

[40] Shibo Wang, Jinliang Wei, Amit Sabne, Andy Davis, Berkin Ilbeyi,
Blake Hechtman, Dehao Chen, Karthik Srinivasa Murthy, Marcello
Maggioni, Qiao Zhang, Sameer Kumar, Tongfei Guo, Yuanzhong Xu,
and Zongwei Zhou. Overlap communication with dependent computa-
tion via decomposition in large deep learning models. In Proceedings of
the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 1, ASPLOS 2023,
page 93–106, New York, NY, USA, 2022. Association for Computing
Machinery.

[41] L. Zhang, S. Shi, X. Chu, W. Wang, B. Li, and C. Liu. Dear: Accelerating
distributed deep learning with fine-grained all-reduce pipelining. In
2023 IEEE 43rd International Conference on Distributed Computing Sys-
tems (ICDCS), pages 142–153, Los Alamitos, CA, USA, jul 2023. IEEE
Computer Society.

[42] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang,
Min Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer,
Alban Desmaison, Can Balioglu, Pritam Damania, Bernard Nguyen,
Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp:
Experiences on scaling fully sharded data parallel. Proc. VLDB Endow.,
16(12):3848–3860, aug 2023.

[43] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa: Automating
inter- and Intra-Operator parallelism for distributed deep learning.
In 16th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 559–578, Carlsbad, CA, July 2022. USENIX
Association.

https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/dgx-a100/dgxa100-system-architecture-white-paper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/dgx-a100/dgxa100-system-architecture-white-paper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/dgx-a100/dgxa100-system-architecture-white-paper.pdf
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://images.nvidia.com/content/pdf/nvswitch- technical-overview.pdf
https://images.nvidia.com/content/pdf/nvswitch- technical-overview.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Collective Communication
	2.2 Hybrid Parallel Training
	2.3 Motivations

	3 Overview
	3.1 Communication Partition
	3.2 Hierarchical Scheduling

	4 Implementation
	5 Evaluation
	5.1 Single Parallel Performance
	5.2 Hybrid Parallel Performance
	5.3 Performance Scalability
	5.4 FSDP Case Study

	6 Related Work
	7 Conclusions
	8 Acknowledgments
	References

